From postmarketOS
Revision as of 08:21, 23 July 2022 by BenTheTechGuy (talk | contribs) (Amllogic mailing list)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Mainlining is the process of replacing the kernel provided by the device vendor (the "downstream" kernel), with a version close to the actively developed version released on (the "mainline" kernel). It involves porting (and most importantly: cleaning up) device-specific code from the downstream kernel to the mainline kernel. For some SoCs, common support already exists in mainline, so you can focus on device-specific components.


Mainlining is a fairly complicated process, especially if you're one of the first to start work on a given SoC. However through community effort there is a growing number of SoCs that have increasingly stable mainline ports (see below). In general it is relatively simple to take your existing Android kernel and boot it without any of the Android blobs, however from that point it can be a lot of working to create a working system and at the end of it you don't receive any security patches or general improvements.

Apart from purely practical insufficiencies, the cold hard truth is that the downstream code is simply not meant to be maintained or get used outside Android. The code quality is often several magnitudes worse, which makes maintenance rather complicated. Often large parts of the drivers are moved into proprietary parts in Android userspace - which are generally impossible to use without emulating the expected Android environment. At the end, the effort to make such drivers work properly on long term is often as much as rewriting them properly for mainline.

Successfully mainlining an SoC or device means that you benefit from every improvement the Linux kernel has to offer, you can run a fairly standard Linux distro (in theory even any Linux distro) and benefit from kernel updates and improvements without needing to compile your own kernel or deal with frustrating patches. A notable easy-to-notice benefit of running mainline is minimal-effort-needed GPU support for almost all GPUs (except PowerVR unfortunately), which is needed for using modern phone DEs like Plasma Mobile or Phosh with acceptable performance. Lastly, mainlining is a terrific learning opportunity that you will never regret.

If your device's SoC is in the list below there's a very decent chance that you can get the same functionality working on your device and eventually upstream your patches to the kernel, helping to build a solid base for other devices too!


Supported SoCs

Some SoCs are already supported quite well and are used for some devices in postmarketOS. Getting started with one of these might be easier for you, because you can get help from others working with the same SoC. The feature matrix below shows which features are already supported for a particular SoC. The pages for each SoC will provide more information, plus hints how to get started and who you can contact.

  • CPU: SMP (bring up secondary CPU cores), CPU frequency scaling, CPUidle
  • Storage: eMMC, SD cards, UFS, ...
  • Video: Hardware-accelerated video de/encoding
  • Modem: Calls, SMS, Internet
  • Suspend: Can reach (all) low-power modes of the SoC during suspend (either system suspend or cpuidle).
  • Unavailable (-) means that such a feature is not built directly into SoC. For example, WiFi/BT are also often used through SDIO/UART which can be chosen independently from the SoC.

Note: The statuses displayed below signify if a particular feature was tested on a device by someone in the postmarketOS community - not necessarily the components supported in the mainline kernel.

SoC Arch Year UART USB Storage Display CPU GPU Pinctrl I²C Audio Video Thermal WiFi BT Modem GPS Camera Suspend
Allwinner A64 aarch64 2015 Y Y Y Y P P Y Y Y Y - - - - Y P
Amlogic S905X/W/Z aarch64 2016 Y Y P Y Y Y Y Y Y P Y - - - - -
Broadcom BCM21664 armv7 2012 Y N P P Y - - -
Broadcom BCM23550 armv7 2012 Y N P P Y - - -
Freescale i.MX6 SLL armv7 2011 Y Y Y Y Y - Y Y Y - Y - - - - Y
Freescale i.MX6 SoloLite armv7 2011 Y Y Y Y Y - Y Y Y - Y - - - - Y
Intel Bay Trail x86_64 2013 Y Y Y Y Y Y Y Y Y Y Y - - - - N Y
Marvell PXA1908 aarch64 2014/2015 Y Y N N P N N N N N N N N N N
MediaTek MT6582 armv7 2013 Y N N N P N N N N N N N N N N N N
MediaTek MT6589 armv7 2013 Y N N N P N N N N N N - - N - N N
MediaTek MT6735 aarch64 2014-2016 Y P P N N N Y N N N N N N N N N N
MediaTek MT8183 aarch64 2019 Y Y Y Y Y Y Y Y Y Y Y Y Y - - N Y
Nvidia Tegra 2 armv7 2010 Y Y Y Y Y P Y Y Y Y Y - - - - P Y
Nvidia Tegra 3 armv7 2011 Y Y Y Y Y P Y Y Y Y Y - - - - P Y
Nvidia Tegra 4 armv7 2013 Y P Y Y P P Y Y Y P Y - - - - Y
Qualcomm APQ8064 armv7 2013 Y Y Y Y Y N Y Y N Y Y N
Qualcomm MSM8212 armv7 2013 Y Y Y P Y Y
Qualcomm MSM8226 armv7 2013 Y Y Y N P N Y Y N N N Y N N N N N
Qualcomm MSM8909 armv7 2015 Y Y Y P Y Y N P N N N
Qualcomm MSM8916 aarch64 2014 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y P
Qualcomm MSM8939 aarch64 2014 Y Y Y Y P Y Y Y Y Y Y Y Y
Qualcomm MSM8953 aarch64 2016 Y Y Y Y Y Y Y Y Y Y Y Y Y P P P
Qualcomm MSM8960 armv7 2012 Y P P Y Y P
Qualcomm MSM8974 armv7 2013 Y Y Y Y P P Y Y N N Y Y Y P N N N
Qualcomm MSM8976 aarch64 2016 Y P Y Y N Y Y Y N N Y Y Y P N N
Qualcomm MSM8996 aarch64 2016 Y Y P Y P Y Y Y Y Y Y - - P P N
Qualcomm MSM8998 aarch64 2017 Y Y P P N Y Y Y Y Y Y P Y
Qualcomm SDM630 aarch64 2017 Y P Y P P Y Y P P
Qualcomm SDM636 aarch64 2017 Y P Y P Y Y
Qualcomm SDM660 aarch64 2017 Y P P P Y
Qualcomm SDM670 aarch64 2018 N P P Y P Y P P N N N N N N N
Qualcomm SDM845 aarch64 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y P Y Y
Qualcomm SM6350 aarch64 2020 Y Y Y Y Y Y Y Y N N N Y N P N
Qualcomm SM7125 aarch64 2020 Y Y Y Y Y Y Y Y Y Y P
Qualcomm SM7150 aarch64 2019/2020 Y Y Y P Y Y Y Y Y P Y
Qualcomm SM8150 aarch64 2019 Y Y Y Y Y Y Y Y
Qualcomm SM8250 aarch64 2020/2021 Y Y Y P Y Y Y Y Y Y Y
Qualcomm SM8350 aarch64 2021 P Y P Y
Qualcomm SM8450 aarch64 2021 Y Y Y Y Y Y
Rockchip RK3399 aarch64 2016 Y Y Y Y Y Y Y Y Y Y Y - - - - Y
Samsung Exynos 3250 armv7 2014 Y Y Y Y Y Y Y Y Y Y
Samsung Exynos 4210 armv7 2011 Y Y Y Y Y Y Y - - - -
Samsung Exynos 4412 armv7 2012 Y Y Y Y Y Y Y Y Y Y - - - - Y
Samsung Exynos 5250 armv7 2012 Y Y Y Y Y N Y Y Y N Y - - - - Y
Samsung Exynos 5420 arm 2013 Y Y Y Y Y N Y Y Y N Y - - - - Y
Samsung Exynos 5422 armv7 2014 Y Y Y Y Y Y Y Y Y Y Y Y
Samsung Exynos 5433 aarch64 2014 Y Y Y Y Y Y Y Y Y Y Y
Samsung Exynos 8895 aarch64 2017 Y Y
ST-Ericsson NovaThor U8500 armv7 2011 Y Y Y Y Y Y Y Y N N Y - - N - N Y
Texas Instruments OMAP3xxx armv7 2008 Y Y Y Y Y N Y Y Y N Y - - - - Y Y
Texas Instruments OMAP44xx armv7 2011 Y Y Y Y Y N Y Y Y N Y - - - - P Y

Getting help

Mainlining related to postmarketOS is primarily discussed in the #postmarketOS-mainline channel. For one of the SoCs above there should be someone around who is able to help you to some extent. Note that you will be on your own for some of the problems - there are often device specific problems or components that no one has experience with yet.

Below are some more chat channels / mailing list that may be helpful for further help or if you want to work on a SoC that is not listed above (yet!):

In Matrix, you can browse most of Linux kernel development related channels in #linux-kernel-devspace

SoC Where to ask for help
#postmarketOS-mainline (SoC-specific questions might be limited to those listed above)
Allwinner #linux-sunxi on OFTC,
Amlogic #linux-amlogic on,; general information is available at
Broadcom Kona ask knuxify, bcm-kona-mainline on GitHub
Exynos #replicant (with focus on older variants) or #linux-exynos on (ask forkbomb, Putti, krzk),
Mediatek #linux-mediatek on,
OMAP3 / OMAP4 ask @pavelm,
Qualcomm (msm...) #linux-msm on OFTC,
Qualcomm Snapdragon 600 (APQ8064) and Qualcomm Snapdragon S4 Plus (MSM8960) Qualcomm entry + join
Qualcomm Snapdragon 615/616 (MSM8939) Qualcomm entry + join
Qualcomm Snapdragon 820/821 (MSM8996) Qualcomm entry + join
Qualcomm Snapdragon 845 (SDM845) Qualcomm entry + ask Caleb and join
nVidia Tegra #postmarketOS-on-transformers on (although focused on the Asus Eee Pad Transformer family, they also offer help with other Tegra devices), #tegra on,

Getting Started

  • Collect as much information about your device as you can: downstream kernel sources, specifications, schematics (can be sometimes found with your favorite search engine) are all going to prove invaluable when attempting to port a device to mainline.
  • Serial debugging will be helpful especially in the beginning (before USB or network is working). Some devices expose it through the USB port or the audio jack; others have test points available on the mainboard.
  • Choose a kernel tree:
    • Mainline: (the last kernel version released by Linus Torvalds) Usually a good compromise of being recent, yet quite stable. torvalds/linux.git
    • linux-next: A collection of recently merged changes from many subsystems; use this if you are working on a very recent SoC. next/linux-next.git
    • There may be more WIP changes available in Linux kernel trees specific to your SoC.
  • Compiling kernels with is very useful to integrate kernel development into postmarketOS.
  • If you are attempting to port to a SoC listed above, check the SoC wiki page for further help and instructions.
  • Do not attempt to copy any code as-is from downstream. In general this won't work, and most importantly: it won't be accepted for inclusion into the mainline kernel upstream.
    • Instead, try to understand what the downstream code does, and rewrite it from scratch for mainline by looking at similar code.

Materials to look into

This section include many useful sources to help you with mainlining as possible.

Note: Linux architecture regarding to embedded devices moving fast forward, so be aware that some specific information can get outdated in 2 – 3 years.


  • Mastering Linux Device Driver Development: Write custom device drivers to support computer peripherals in Linux operating systems (2021, John Madieu) Packtpub (on SALE for $ 5)
  • Linux Driver Development for Embedded Processors - Second Edition: Learn to develop Linux embedded drivers with kernel 4.9 LTS (2018, Alberto Liberal De Los Ríos)


  • Porting mainline Linux to mobile phones, Luca Weiss, 2022 (40:00) FOSDEM
  • Running Mainline Linux on Snapdragon 410, Nikita Travkin, 2022 (40:00) FOSDEM
  • From Android to mainline on the Snapdragon 845, Caleb Connolly, 2022 (30:00) FOSDEM
  • Qualcomm SoC upstreaming adventures in 2020 Youtube Odysee
  • Porting Linux to your favorite obscure Arm SoC, 2020 Youtube Odysee
  • Upstreaming a Qualcomm SoC, 2020 YouTube Slides Overview of porting 2020-era SoC
  • Introduction into how mainlining is done, 2017 (52:37) Youtube Odysee


Writing device trees:


Power Management

  • SAN19-421 Training: Device power management for idle Youtube

Various topics:

  • Pin Control and GPIO, 2013 (48:03) Youtube Odysee Slides talk by Linus Walleij
  • Timekeeping in the Linux Kernel - Stephen Boyd, Qualcomm Innovation Center, 2017 (34:41) Youtube Odysee About how clocksource works.
  • How Dealing with Modern Interrupt Architectures can Affect Your Sanity Youtube Odysee Slides About interrupt controllers and their relationships
  • Linux Kernel Display Architecture, 2013 (56:53) Youtube Odysee DRM/KMS, MIPI DSI, panels,... slightly old, need something newer.
  • Demystifying Linux MIPI DSI Subsystem - Jagan Teki, 2019 (41:57) Youtube Odysee MIPI DSI, controllers, bridges, panels, DRM/KMS...
  • Power Management Integrated Circuits: Keep the Power in Your Hands, 2017 Youtube Odysee Slides About PMICs, regulators, power supply, fuelgauge, ...

Development tools

  • Using Visual Studio Code for Embedded Development - Michael Opdenacker, Bootlin, 2021 (31:37) Youtube

Note: for VSCodium, download extensions from manually.

Submitting patches:

See also